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Humans consume a wide range of foods, drugs, and dietary supplements that are derived from plants and which modify the functioning of the
central nervous sytem (CNS). The psychoactive properties of these substances are attributable to the presence of plant secondary metabolites,
chemicals that are not required for the immediate survival of the plant but which are synthesized to increase the fitness of the plant to survive by
allowing it to interact with its environment, including pathogens and herbivorous and symbiotic insects. In many cases, the effects of these
phytochemicals on the human CNS might be linked either to their ecological roles in the life of the plant or to molecular and biochemical
similarities in the biology of plants and higher animals. This review assesses the current evidence for the efficacy of a range of readily available
plant-based extracts and chemicals that may improve brain function and which have attracted sufficient research in this regard to reach a
conclusion as to their potential effectiveness as nootropics. Many of these candidate phytochemicals/extracts can be grouped by the chemical
nature of their potentially active secondary metabolite constituents into alkaloids (caffeine, nicotine), terpenes (ginkgo, ginseng, valerian, Melissa
officinalis, sage), and phenolic compounds (curcumin, resveratrol, epigallocatechin-3-gallate, Hypericum perforatum, soy isoflavones). They are
discussed in terms of how an increased understanding of the relationship between their ecological roles and CNS effects might further the field

of natural, phytochemical drug discovery. Adv. Nutr. 2: 32-50, 2011.

Introduction

Approximately one-half of all licensed drugs that were registered
worldwide in the 25 y period prior to 2007 were natural products
or their synthetic derivatives. However, only 3 of a total of 84 psy-
chotropics registered in this period fell within this class (1). Al-
though the contemporary medical pharmacological arsenal
includes an array of synthetic psychotropic medications designed
to modify aspects of brain function in specific pathological groups,
to date there are few mainstream options in terms of improving
brain function for cognitively intact populations. These groups in-
clude the growing segments of our aging societies that suffer from
natural, age-related declines in brain function. Even sufferers from
dementia are offered few treatment options for their more severe
cognitive deficits. Those that are available are generally potentially
toxic cholinesterase inhibitors that were initially derived from alka-
loid phytochemicals (2). These chemicals generally have a less than
favorable efficacy/side effect profile (3). Contrast this with the mul-
titude of off-the-shelf herbal supplements that purport to improve
aspects of brain function and are commonly used in developed so-
cieties. As an example, ~20% of the population of the US takes
herbal products, often in the absence of any good evidence of their
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effectiveness, with 6 of the 10 most popular products being con-
sumed in the belief that they will beneficially modify aspects of
brain function (4).

A huge scientific literature focusing on psychoactive herbal ex-
tracts and their phytochemicals, encompassing hundreds of thou-
sands of scientific papers, has emerged over recent decades. The
vast majority of these papers describe in vitro investigations of
the potential mechanisms of action of putatively psychoactive phy-
tochemicals, whereas a much smaller proportion explores their ef-
fects in vivo in animals and only a tiny minority investigate their
efficacy in humans.

The following comprises a review concentrating on those few
nonprescription plant extracts and phytochemicals that have gar-
nered enough evidence in human trials to arrive at some sort of in-
dication of their efficacy in terms of improved brain function.
Several polyphenols that are attracting huge scientific interest and
that are in the first stages of the human trial process are included
for completeness.

Curiously, one question that is almost completely ignored in the
vast literature surrounding the effects of natural psychotropics is
why plant chemicals affect human brain function. The answer to
this fundamental question is not only of academic interest but
also has a number of practical implications for future research and
product development. This review therefore includes a consideration

©2011 American Society for Nutrition. Adv. Nutr. 2: 32-50, 2011; doi:10.3945/an.110.000117.
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of why the plant chemicals that affect brain function, almost all of
which can be classified as secondary metabolites, have their effects
and how an exploration of this subject might help move this field of
research forward.

The role of secondary metabolites in plants

Plants, and the evolutionarily more recent subdivision of flowering
plants (angiosperms), have colonized the vast majority of the ter-
restrial surface, courtesy of rich levels of specialization and intricate
relationships with other organisms. They make an exponentially
larger contribution to terrestrial biomass by volume and weight
than all other forms of life combined (5). However, as stationary
autotrophs, plants have to cope with a number of challenges, in-
cluding engineering their own pollination and seed dispersal, local
fluctuations in the supply of the simple nutrients that they require
to synthesize their food, and the coexistence of herbivores and
pathogens in their immediate environment. Plants have therefore
evolved secondary biochemical pathways that allow them to syn-
thesize a raft of chemicals, often in response to specific environ-
mental stimuli, such as herbivore-induced damage, pathogen
attacks, or nutrient depravation (6,7). These secondary metabolites
can be unique to specific species or genera and do not play any role
in the plants’ primary metabolic requirements, but rather they in-
crease their overall ability to survive and overcome local challenges
by allowing them to interact with their environment (8). An indi-
cation of how essential these secondary metabolites are to plants’
survival can be seen in the energy invested in their synthesis, which
is usually far in excess of that required to synthesize primary me-
tabolites (9). Some of the roles of secondary metabolites are rela-
tively straightforward; for instance, they play a host of general,
protective roles (e.g. as antioxidant, free radical-scavenging, UV
light-absorbing, and antiproliferative agents) and defend the plant
against microorganisms such as bacteria, fungi, and viruses. They
also manage inter-plant relationships, acting as allelopathic de-
fenders of the plant’s growing space against competitor plants.
More complex roles include dictating or modifying the plant’s re-
lationship with more complex organisms (8,10,11). Their primary
role here is often viewed as being one of feeding deterrence, and to
this end many phytochemicals are bitter and/or toxic to potential
herbivores, with this toxicity often extending to direct interactions
with the herbivore’s central and peripheral nervous systems (12). In
this regard, secondary metabolites often act as agonists or antagonists
of neurotransmitter systems (11,13) or form structural analogs of en-
dogenous hormones (14). However, equally importantly, plants also
have to foster a number of symbiotic relationships in order to sur-
vive. The most obvious role here is attraction of pollinators and other
symbiotes via colors and scents or the provision of indirect defenses
for the plant by attracting the natural enemies of their herbivorous
attackers. This may take the form of providing an attractive chemical
milieu for the predator or, alternatively, may be in direct response to
tissue damage by the herbivore, which results in the synthesis and re-
lease of a cocktail of phytochemicals that attract the natural predators
of the herbivore (8,10,11).

In terms of the evolutionary forces that have shaped the plant’s
selection of phytochemicals, it is notable that plants live within
their own microenvironment, replete with a comparatively warm
and humid microclimate rich in chemical emissions (15). Their in-
teractions with animals are most often with the rich palette of in-
vertebrates that coexist alongside them, and in particular with the
arthropod, or insect, subgroup. The insect group itself comprises
more than one-half of all of the species of multi-cellular life iden-
tified on earth thus far (16). Nearly one-half of all of these insect
species are herbivorous, with the feeding habits of most species

restricted to a small number of plant species (17). Many of the re-
mainder live courtesy of either direct symbiotic relationships with
plants or predation on other herbivorous insects. On the other
side of the coin, two-thirds of flowering plants are entirely reliant
on symbiotic insect interactions for pollination (15). Not surpris-
ingly, plants and insects have coevolved in terms of physical and
chemical diversity over their 400 million year common history
(15,18).

In contrast to the pivotal role of insects in the life of plants, it is
notable that vertebrates make up a mere 4% of species on earth and
are physically outweighed by insects by a factor of 10 to 1 across
temperate areas of the earth (5). Although there are many examples
of plant secondary metabolites interacting with vertebrates, the
evolutionary imperative underlying these instances naturally be-
come less prevalent to the majority of plants as the size of the an-
imal increases and frequency of contact decreases. In these terms,
humans have been inconsequential to the plant kingdom until
the very recent past (in evolutionary terms) and the advent of ag-
riculture some 12,000 y ago, with the ensuing deforestation and
transformation of the earth’s surface.

Biological similarities across taxa

The common ancestry of all multi-cellular organisms has endowed
them with a wide range of conserved cellular processes, including
similarities in most pathways for the synthesis and breakdown of
proteins, nucleic acids, carbohydrates, and lipids. A number of
molecules that function as neurochemicals within the mammalian
central nervous sytem (CNS), for instance acetylcholine (ACh),?
also originated in common ancestors and are ubiquitous across
all eukaryotes (19). At a molecular level, the extensive cytochrome
P450 group of enzymes occurs in all living organisms and is in-
volved in the biosynthesis, detoxification, and metabolism of com-
pounds (20). Similarly, a raft of inter-related, ancestral, signaling
molecules and pathways are preserved in both plants and animals
(21). For instance, nitric oxide (NO) plays a key cellular signaling
role in all animals and plants (22). Additionally, multiple aspects
of cellular and redox signaling are conserved between the taxa
(23,24), including similar gene expression in response to cellular
stressors, which are regulated by common transcription factors
(24). Glutathione in its various forms plays a role as the predomi-
nant nonprotein thiol across the taxa, acting as an important en-
dogenous antioxidant (23). Of potentially pivotal relevance
here, the fatty acid-derived, growth-regulating jasmonate family
of plant signaling molecules (cis-jasmone, jasmonic acid, and
methyl jasmonate) and many mammalian paracrine molecules, in-
cluding prostaglandins and other eicosanoids, are synthesized via
the same genetically preserved pathways (25), with both groups
of chemicals playing a role in the response to physical and biotic
stressors in their respective taxa (26,27). One common, key, rele-
vant function of NO, redox signaling molecules, and the jasmo-
nates in plants is also in the induction and synthesis of secondary
metabolites (28,29).

Naturally, humans share greater similarities with insects than
plants. For instance, most ‘human’ neurochemicals, such as neuro-
peptides (30), hormones (31), and neurotransmitters, including
dopamine (DA), serotonin (5-HT), glutamate, y-aminobutyric
acid (GABA), and ACh (32,33), can be found in insects. Even

2 Abbreviations used: 5-HT, serotonin; ACh, acetylcholine; AChE, acetylcholinesterase; AD,
Alzheimer's Disease; CNS, central nervous sytem; DA, dopamine; EGCG, epigallocatechin-3-gallate;
GABA, y-aminobutyric acid; GB, Ginkgo biloba extract; GE, ginseng extract; HP, Hypericum
perforatum; MO, Melissa officinalis; SI, soy isoflavone; SL, Salvia lavandulaefolia; VE, valerian
extract.
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the uniquely nonvertebrate neurotransmitter/modulator octopa-
mine is functionally and structurally analogous to noradrenaline
(34). These common neurochemicals can play similar or at times
different roles in humans and insects. So, for instance, across the
taxa, glutamate functions as a key excitatory neurotransmitter
(35) and ACh plays a key role in memory and neural plasticity
(36,37), but 5-HT activity has opposite effects on aggressive behav-
ior (31) and dopaminergic neurons are implicated in aversive
learning in insects but reward in mammals (38). The underlying
neuronal functional apparatus governing synaptic release and recy-
cling, receptor interactions, and signal transduction mechanisms
are also preserved in both taxa (33), including the role of NO as
a secondary messenger (37). As an example, long-term memory
is dependent on the same process of long-term potentiation in in-
sects as seen in mammals (39) and this is underpinned by the same
molecular processes, such as NO and cAMP signaling (37,40) and
the involvement of glutamate and N-methyl-D-aspartic acid recep-
tors (41). Even the cognitive architecture of the insect brain shares
similarities with that of the vertebrates, with common principles of
modularity within the CNS in terms of specific sensory domains,
and higher order structures integrating information (42).
Courtesy of these similarities and the comparative simplicity of
their nervous systems, invertebrates, including insects, have been
deployed for more than fifty years as a model for unraveling
many of the fundamental processes in the CNS and resultant be-
haviors (32). Insects have also been employed as standard models
for the investigation of cognitive processes (42), with the honeybee
serving as a model for the study of an “intermediate level of cogni-
tive complexity” both in terms of behavior and neural mechanisms
(43). Insects have also been used as models to study behavioral re-
sponses to, among others, addictive drugs (33,42), alcohol (44),
diet (45), sleep deprivation (46), and age-associated cognitive decline
(47) and the behavioral effects of serotonergic (48), dopaminergic
(49), glutamatergic (50), GABAergic (51), and cholinergic (36) phar-
macological agents. So, for instance, pharmacological agents that up-
regulate activity in the nicotinic and muscarinic cholinergic systems
improve memory processes in both mammals and insects, whereas
downregulation of the same systems has the opposite effects (52).

Hypotheses: why secondary metabolites affect human
brain function

These similarities suggest 2 broad, alternate, but complementary
hypotheses as to the factors underpinning the effects of secondary
metabolites on human brain function.

The first is simply that any effects might be due to the similar-
ities between plant and mammalian biochemistry and molecular
functioning, in particular the many molecular signaling pathways
that are conserved between the taxa and play roles in secondary
metabolite synthesis within plants (53).

The second is that the effects are predicated on the similarities
between the nervous systems of humans and those of the most
prevalent, natural herbivores of plants, in particular, insects. In
this case, phytochemicals whose synthesis has been retained by a
process of natural selection on the basis of their ability to interact
with the CNS of herbivorous or symbiotic insects will also interact
with the human CNS system via the same mechanisms, with either
similar, or in some cases dissimilar, behavioral effects.

Current status of knowledge

A vast number of natural, plant-based extracts and chemicals are
purported to have beneficial effects on human brain function.
Zhang (54) identified extracts and constituents from 85 individual
medicinal plants that have demonstrated potential efficacy for
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Figure 1 Structures of the alkaloids caffeine and nicotine.

treating psychiatric disorders on the basis of animal behavioral
models alone. However, few plant-based products have been as-
sessed in methodologically adequate human trials. A simple litera-
ture search using the individual names of the few extracts and
compounds reviewed below (excluding nicotine and caffeine) gen-
erates some 30,000 publications. The 3 single polyphenols [epigal-
locatechin-3-gallate (EGCG), curcumin, and resveratrol] alone
contribute 15,000 of these papers, the vast majority of which
have been published in the last 10 y. This represents a huge amount
of research and naturally raises the question of the ultimate efficacy
of the interventions in question. The following comprises a brief
review of the evidence surrounding the handful of herbal extracts
and phytochemical supplements that have garnered enough evi-
dence of efficacy or have been subjected to adequate levels of re-
search to allow any conclusion as to their efficacy in terms of
improved brain function. The polyphenols are included on the ba-
sis of the enormous interest they are generating currently.

The palette of secondary metabolites can be subdivided into a
number of distinct groups on the basis of their chemical structure
and synthetic pathways, and these groups can, in turn, be broadly
differentiated in terms of the nature of their ecological roles and
therefore their ultimate effects and comparative toxicity in the con-
suming animal. The extracts/phytochemicals are therefore grouped
below by the chemical nature of their putative active components.
In this regard, the largest and most prevalent of phytochemical
groups are the alkaloids, terpenes, and phenolic compounds.

Alkaloids

Alkaloids are a structurally diverse group of over 12,000 cyclic
nitrogen-containing compounds that are found in over 20% of
plant species (55). Although no single classification exists, alkaloids
are often distinguished on the basis of a structural similarity (e.g.
indole alkaloids) or a common precursor (e.g. benzylisoquinoline,
tropane, pyrrolizidine, or purine alkaloids).

The recorded use of alkaloids for medicinal purposes stretches
back some 5000 y (56) and this chemical group has contributed
the majority of the poisons, neurotoxins, and traditional psyche-
delics (e.g. atropine, scopolamine, and hyoscyamine, from the plant
Atropa Belladonna) and social drugs [e.g. nicotine, caffeine, meth-
amphetamine (ephedrine), cocaine, and opiates] consumed by hu-
mans (57). This group also provides the cholinesterase inhibiting
treatments routinely prescribed for the cholinergic dysregulation
of Alzheimer’s Disease (AD), such as galantamine, huperzine, phy-
sostigmine, and rivastigmine (2).

In terms of their ecological roles, alkaloids primarily act as feed-
ing deterrents and toxins to insects and other herbivores (8), in
many cases by directly interacting with molecular targets within
the nervous system (13). For instance, individual alkaloids act as
agonists and antagonists to a variety of neurotransmitter systems
via, for instance, direct binding to neuroreceptors and interference
with neurotransmitter metabolism (e.g. cholinesterase inhibition),
signal transduction, and ion channel function (13) or by
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mimicking the structure of endogenous neurochemicals (11). A
number of specialized herbivorous species have adapted to either
tolerate or sequester alkaloids from their host plant. However,
plant-derived alkaloids, by function and chemical nature, are toxic
to mammals (12). Hagen et al. (58) point out that the psychoactive
effects of alkaloid addictive drugs are predicated on their ecological
role as insect deterrents/toxins and suggest that their addictive
properties may partly arise as a consequence of the divergence of
some of the roles of DA in insects and mammals.

Examples of some alkaloid secondary metabolites that are in
common usage as psychotropic medicines, social drugs, or halluci-
nogens and have been used in insect studies either as simple tools
for the modulation of specific neurotransmitter targets or, alterna-
tively, in insect models of drug abuse and addiction are shown in
Table 1. Given their toxicity profile and low levels of efficacy in
terms of benefits to brain function, few alkaloid-based psychotro-
pics are appropriate for use as nootropics in healthy populations.
Two potential exceptions are caffeine, which is ubiquitously con-
sumed by humans, and nicotine, the psychoactive constituent of
tobacco. The chemical structure of caffeine and nicotine are shown
in Figure 1.

Caffeine (and co-occurring phytochemicals). Caffeine is a purine
alkaloid. Its ecological roles include chemical defense against path-
ogens and herbivores (59) and as a potential intra-plant allelopath
whereby it inhibits the growth and fertility of competitor plants
(60). In insects, caffeine increases arousal, reduces sleep (46,61),
and decreases tonic immobility (62), with these effects mediated
by interactions with adenosine and DA D, receptors (63). Similarly,
in mammals, caffeine is a competitive antagonist of inhibitory
adenosine A; and A, receptors, which in turn leads to activation
via increased dopaminergic and glutamatergic activity (64). Caf-
feine also has a vaso-constricting effect on peripheral and cerebral
blood flow via inhibition of vascular adenosine A,, receptors (65).
Chronic caffeine consumption may lead to increased adenosine re-
ceptor populations and/or sensitivity, and this may underlie subse-
quent withdrawal effects (66), which include increases in basal
cerebral blood flow (67). For humans, caffeine is the most widely
consumed psychoactive substance across the globe and is a popular
additive to products for its purported stimulant effects. It has at-
tracted a huge amount of research and, at low doses, is generally
seen to increase subjective alertness and performance on attention
tasks, although it has been suggested that these effects merely rep-
resent the alleviation of withdrawal as a consequence of using de-
prived habitual caffeine consumers in many experimental
paradigms (68). However, caffeine has also been shown to demon-
strate similar effects even when there is no evidence of withdrawal
in habitual consumers (66,69,70). At higher doses, caffeine leads to
increased anxiety, restlessness, insomnia, tachycardia, and psycho-
motor agitation and ultimately to caffeine intoxication, and, in ex-
treme cases, death (71).

Co-occurring phytochemicals. Caffeine is one potentially active
constituent in many foods and extracts that contain other phyto-
chemicals, including tea (Camellia sinensis), guarana (Paulinia cu-
pana), maté (Illex paraguariensis), and cocoa (Theobroma cacao).
Where the effects of caffeine in these forms has been investigated,
the results have demonstrated either psychoactive effects that are
not attributable to the caffeine content of the treatment, e.g. follow-
ing single doses of guarana that contain comparatively high levels of
terpenoids but low levels of caffeine (72), or the direct modulation
of the effects of caffeine by the co-occurring phytochemicals. As an
example, coadministration of the amino acid 1-theanine, which is

found in tea, attenuates the negative effects of caffeine on blood
pressure (73) and cerebral blood flow (D. O. Kennedy and C. E.
Haskell, unpublished data) and potentiates its cognitive effects
(74).

Nicotine. Nicotine is a pyridine alkaloid from the American plant
Nicotiana tabacum that is induced as an insecticide and antiparasite
agent by leaf wounding and insect damage (55). Nicotine is highly
toxic to mammals, and although very low doses are delivered
by smoking, nicotine can be administered at lethal doses trans-
dermally or orally. In insects (Drosophila), volatilized nicotine
causes hyperactivity at low doses and reduced activity and paralysis
with ascending dose. These effects are mediated by excitatory direct
binding to nicotinic ACh receptors and increased dopaminergic ac-
tivity (33). In mammals, nicotine binds directly to nicotinic ACh
receptors, increasing the release of a number of neurotransmitters,
including ACh, glutamate, and 5-HT, with increased DA activity in
the ventral tegmental area underlying nicotine’s addictive proper-
ties (75). Nicotine’s effects on attention and memory are mediated
by cholinergic projections to the prefrontal cortex and direct bind-
ing to receptors in the amygdala and hippocampus, respectively
(76,77). In terms of improved brain function, much of the early re-
search was confounded by similar withdrawal issues pertaining to
caffeine research. However, Heishman et al. (78) meta-analyzed
50 methodologically adequate, double-blind, placebo-controlled
studies that assessed the effects of nicotine administered via various
methods in nondeprived smokers, minimally deprived smokers, or
nonsmokers. They concluded that nicotine consistently improved
cognitive performance in a number of domains, including atten-
tion, episodic memory, and working memory. Trans-dermal nico-
tine treatment has also been proposed for the behavioral deficits
and cognitive decrements associated with old age and a number
of conditions, including attention deficit hyperactivity disorder,
AD, and schizophrenia (79). However, given its addictive properties
and hypertensive/vascular effects, it seems unlikely as a candidate
phytochemical for improved brain function in healthy, nonelderly
adults.

Terpenes

Terpenes are a diverse group of more than 30,000 lipid-soluble
compounds. Their structure includes 1 or more 5-carbon isoprene
units, which are ubiquitously synthesized by all organisms through
2 potential pathways, the mevalonate and, more recently identified,
deoxy-d-xylulose pathways (102). Terpenoids are classified accord-
ing to the number of isoprene units they contain; isoprene, which
itself is synthesized and released by plants, comprises 1 unit and is
classified as a hemiterpene; monoterpenes incorporate 2 isoprene
units, sesquiterpenes incorporate 3 units, diterpenes comprise
4 units, sesterpenes include 5 units, triterpenes incorporate 6 units,
and tetraterpenes 8 units.

As a broad group, terpenes exhibit a range of toxicity from
deadly to entirely edible and this is in keeping with their broad
range of ecological roles, which include antimicrobial properties
and a range of properties that attract symbiotes for the purposes
of pollination, seed dispersal, and secondary protective roles. These
latter roles include the provision of airborne chemical signals and
scents, flavor, and taste. Monoterpenes can also function as antiger-
minative, phytotoxic allelopaths (103,104).

Terpenes also exhibit a wide range of effects within the insect
CNS. For instance, the neurotoxic deterrent properties of many
monoterpenes in insects have been shown to include interactions
with the octopamenergic system (analogous to the noradrenergic
system in vertebrates), cholinesterase inhibition, and multiple
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Figure 2 Structures of selected terpenes, including the
monoterpenes 1,8-cineole and geraniol, the sesquiterpene,
valerenic acid, the diterpene, ginkgolide A, and the triterpene,
ginsenoside Rg1.

direct interactions with the GABA system, including blockade of
GABA-gated chloride channels and both agonistic and antagonis-
tic, direct and allosteric binding to GABA, receptors (12). Plants
also synthesize a wide range of ecdysteroids from sterol that are
structural analogs of insect hormones and may play a defensive
role by interfering with the life course and behavior of herbivorous
insects by, for instance, delaying pupation, metamorphoses, and
molting (105). However, one of the terpene conundrums is that
some phytochemicals can act as both deterrent and attractant. As
an example, 1,8-cineole, a monoterpene found in psychoactive
sage and lemon balm extracts, acts as a toxin to coleoptera and
some species of flies but not as a consequence of its cholinesterase
inhibitory properties. It is also harmless to some other taxa, for in-
stance honeybees, and acts as a fragrant attractant for insect polli-
nation. It may also contribute to the indirect defense mechanism of
attracting the natural insect predators of attacking herbivores by
the emission of an induced cocktail of chemicals. (106). It seems
very unlikely that attractant chemicals would have a negative effect
on the functioning of the nervous system of symbiotes, and it may
well be that cholinesterase inhibition by terpenes’ secondary me-
tabolites can be advantageous in behavioral terms to insects that
have a symbiotic relationship with the emitting plant (106). It is in-
teresting to note that many terpenoids also exhibit considerable
toxicity to some insects but very low toxicity to mammals (12),
and this group of chemicals are present in a host of spices, flavors,
and foods that form essential components of our diets both in
terms of the provision of taste and healthy eating. Obvious exam-
ples here are the carotenoids, with B-carotene being endogenously
converted to the human vitamin A.

One other key property of terpenoids is that they are generally
present in complex mixtures that play multiple, differing, or addi-
tive ecological roles for the plant (11). In many cases, they have also
been shown to act synergistically. For instance, the activity of nat-
urally occurring monoterpenoid combinations have been shown to
outweigh the combined activity of their constituent chemicals in
the inhibition of the growth of competitor plants (107) and of

toxicity (108), repellent (109), and deterrent properties in insects
(110) and their mammalian cholinesterase inhibitory properties
(111,112). Many terpenoid-containing herbal extracts have there-
fore resisted the identification of a single active component, while
adequate standardization of herbal extracts has also proved elusive.
The chemical structure of a selection of terpenes are shown in
Figure 2.

Ginkgo biloba. Ginkgo biloba leaf extracts (GB) have been used
medicinally for several millennia and are of some the most com-
monly taken herbal products globally. They are prescribed rou-
tinely in parts of Europe as a nootropic in old age and dementia
(113). GB contains a number of biologically active, species-specific
terpenes: bilobalide and ginkgolides A, B, C, and J (114), and a
range of flavonoid glycosides. Within the plant, these constituents
are associated with insecticidal (115), antifeedant (116), and anti-
microbial (117) activities and are induced by environmental
stressors (118,119).

The potential CNS relevant mechanisms of action of GB include
antagonism of platelet activating factor, enhanced constitutive NO
bioavailability and consequent beneficial effects on peripheral and
cerebral blood flow parameters in humans, modulation of a num-
ber of neurotransmitter systems [including inhibition of monoam-
ine oxidase A and synaptosomal uptake of DA, 5-HT, and
norepinephrine], scavenging and inhibition of free radicals, both
in vitro and in vivo neuro-protective properties, including inhibi-
tion of amyloid-B neurotoxicity, and protection against hypoxic
challenges and increased oxidative stress (120-122). In humans, a
number of randomized control trials have demonstrated cognitive
enhancement in young adults following single doses of GB (123—
127) and in both younger (128) and older (129,130) cognitively
intact populations administered GB for 7 d or longer, although ev-
idence of this is not unequivocal (131,132).

In terms of the many trials assessing the efficacy of GB with re-
gards to cognitive function in dementia, a comprehensive Co-
chrane review (133) meta-analyzed 33 studies that involved
cohorts suffering from dementia or age-related cognitive impair-
ment. The authors concluded that “Overall there is promising ev-
idence of improvement in cognition and function associated with
Ginkgo.” However, in a recent update and reanalysis, the authors
(134) modified their inclusion criteria and analyses and concluded
that the evidence was “inconsistent and unconvincing.” This find-
ing was supported by the recent Ginkgo Evaluation of Memory
Study, where no difference in rate of change of memory, attention,
visuospatial abilities, language, and executive functions was ob-
served between 3069 72-96 y olds taking either 120 mg ginkgo
twice daily or placebo. However, Kaschel (135) notes that the
vast majority of dementia and age-associated cognitive decline
trials have merely reported global measures, thereby obscuring ef-
fects specific to individual cognitive domain. In his own review, he
included 29 methodologically adequate randomized controlled
trials that provided this information and concluded that chronic
treatment with GB resulted in improvements in attention, execu-
tive function, and long-term memory.

Melissa officinalis (Lemon balm). Melissa officinalis (MO) has
been in medicinal use as a mnemonic and anxiolytic psychotropic
for more than 2 millennia (136). Its potentially active components
primarily include monoterpenoids and sesquiterpenes, including
geranial, neral, 6-methyl-5-hepten-2-one, citronellal, geranyl-acetate,
B-caryophyllene and 3-caryophyllene-oxide, and 1,8 cineole (137).
The specific ecological properties of the constituents of MO essen-
tial oils include toxic deterrents to nematodes (138) and insects
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Figure 3 Structures of selected phenolic
compounds.

Curcumin

(139) and as phytotoxic plant allelopaths (103), although individ-
ual components have also been identified as contributors to symbi-
otic attraction (see Sage below).

The CNS-relevant in vitro effects of MO extracts include antiox-
idant properties (140,141), demonstrations of direct nicotinic and
muscarinic cholinergic receptor binding properties in human brain
tissue (142,143), and acetylcholinesterase (AChE) inhibitory prop-
erties (141,142,144) arising from synergies between components
(111). MO extracts also have an affinity for GABA, receptors
(145) and inhibit the enzyme GABA transaminase, leading to
increased GABA activity (146). These properties may underlie
observations of a reduction in both inhibitory and excitatory trans-
mission, with a net depressant effect on neurotransmission, in cul-
tures of rat cortical neurons (147) and anxiolytic properties in terms
of rodent behavior (148). It is notable that B-caryophyllene is also a
cannabinoid type 2 receptor ligand and thus offers potential for the
prevention and treatment of inflammation (149).

In humans, 2 randomized, double-blind, placebo-controlled,
balanced-crossover trials have demonstrated dose-dependent mem-
ory decrements (150) and anxiolytic-like modulation of mood (150,
151) following single doses of an ethanolic MO extract with no cho-
linergic receptor binding properties. A subsequent trial selected and
assessed an encapsulated dried leaf with ACh nicotinic and musca-
rinic binding properties (in human brain tissue) and demonstrated
a dose-related improvement in memory task performance and rat-
ings of mood (152). These results suggest that MO extracts have
consistent anxiolytic properties but that cholinergic receptor bind-
ing is required for overall improvements in brain function.

Two double-blind, placebo-controlled studies have also assessed
the effects of MO in sufferers from dementia, with Ballard et al.
(153) finding improvements in agitation and quality of life follow-
ing essential oil aromatherapy in 71 patients suffering from severe
dementia. Akhondzadeh et al. (154) also demonstrated reduced ag-
itation and improved cognitive (Alzheimer’s Disease Assessment
Scale, cognitive subscale) and behavioral function (Clinical De-
mentia Rating) following a 16-wk administration of a MO alcoholic
tincture to a small cohort (n = 35) of mild to moderate dementia
sufferers.

Panax ginseng. Extracts made from the roots of Panax ginseng, the
most widely consumed member of the Araliaceae family, have a
5000 y medicinal history (155). The putative major active compo-
nents comprise 40 or more species-specific triterpene saponins
known as ginsenosides (156). Within the plant, ginsenosides have
antifungal/-viral/bacterial, insecticidal, and molluscicidal activ-
ity and exert allelopathic and antifeeding effects (157,158).
Ginseng extracts (GE) exert neuro-protective and cardiovascu-
lar properties and modulate the hypothalamic-pituitary-adrenal
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axis and neurotransmission via a plethora of mechanisms at a cel-
lular level, including modulation of NO synthesis (156,159). Ani-
mal behavioral models suggest that ginsenosides have antistress,
antidepressant, and anxiolytic effects; moderate fatigue; improve
memory in impaired rodents, and improve learning by fostering
neurogenesis and modulating long-term potentiation in the hippo-
campus (156,159,160).

To date, the evidence of any effects of GE on physical per-
formance or measures of mood and quality of life in humans
is equivocal, but this may be attributable to methodological in-
consistencies in the literature (159). In terms of human cognitive
performance, a number of randomized, double-blind, placebo-
controlled, balanced-crossover trials of single doses of GE have
demonstrated consistent improvements in the accuracy of memory
task performance (161-163), improvements in the speed of per-
forming attention tasks (163), and decreased latency of evoked po-
tentials and topographical modulation of electrical activity as
measured by electro-encephalography (164). Reay et al. (165,166)
also demonstrated that GE improved the performance of difficult
mental arithmetic tasks and the resultant mental fatigue in fasted
individuals. These effects were accompanied by concomitant re-
ductions in fasted blood glucose levels but were abolished by the
coadminstration of glucose (166). A recent study (167) also ex-
tended the treatment period to 7 d and focused on working mem-
ory performance, demonstrating improved mood in terms of
calmness following both doses of GE investigated (200 and 400
mg) and improved performance of the 3-back task following the
higher dose, but slower performance following the lower dose.
There was no evidence of an increased effect due to the longer
treatment period.

Salvia officinalis and Salvia lavandulifolia (sage). Sage’s history
as a cognition enhancer and treatment for cognitive decline
stretches back to the ancient Greeks. The 2 most commonly used
species of sage, Salvia officinalis and Salvia lavandulaefolia (SL),
share a similar composition, with the exception that SL contains
very little of the potentially toxic GABA, receptor-antagonizing
monoterpenoid thujone (168). Common active components in-
clude several polyphenolic compounds and a range of monoter-
penes (e.g. 1,8-cineole, terpeneole borneol, limonene, camphor
a-pinene, and geraniol) (111,169). The latter group exerts a com-
plex pattern of ecological effects, including neurotoxic deterrence
to some phytophageous insects, and attraction of symbiotic insects
for pollination and indirect defensive purposes, with cholinesterase
inhibition potentially playing a role in both attraction and deter-
rence (106).

Both essential oils and hydro-alcoholic extracts of sage have
been shown in vitro to inhibit human AChE (111,112,169,170)
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and butyrylcholinesterase (112), with in vivo inhibition also being
demonstrated in rodent brains following oral administration
(171). 1,8-Cineole has been shown to be the most potent single
component in terms of cholinesterase inhibition (111) but with
synergistic interactions (and antagonisms) among the compo-
nents increasing the overall potency (111,172). a-Pinene and
geraniol also exhibit antiinflammatory activities and the whole
extract of SL and its geraniol component have demonstrable es-
trogenic activities (173).

A number of double-blind, placebo-controlled, randomized,
balanced-crossover studies in healthy humans have demon-
strated improved memory (174-176), attention/executive func-
tion (176,177), and mood (175,177) following single doses of
cholinesterase-inhibiting sage extracts or essential oils. The
most recent study investigated the effects of a monoterpenoid
SL essential oil with high levels of 1,8-cineole and an ICs, for
AChE inhibition at one-tenth of the concentration previously
seen. Single doses administered to healthy adults were shown
to improve attention, memory, and working memory/executive
function task performance and to increase subjective alertness
(106). A single, double-blind, placebo-controlled trial in a small
cohort (n = 30) of AD patients also demonstrated improved cogni-
tive functioning (Alzheimer’s Disease Assessment Scale, cognitive
subscale) and behavioral function (Clinical Dementia Rating) fol-
lowing al6-wk administration of a Salvia officinalis alcoholic tinc-
ture (178).

Valeriana officinalis L. (valerian). Valerian extracts (VE) have a
long traditional history as mild sedatives and anxiolytics (179),
with these properties attributed to a range of monoterpenes and
sesquiterpenes, including the genus-specific valepotriates and va-
lerenic acid. Root extracts also contain appreciable levels of
GABA (180). Although specific ecological roles have not been de-
lineated for most of these constituents, the valepotriates have
been shown to be induced in response to a number of biotic and
physical stressors (181). Constituents bind to a variety of neuro-
transmitter receptors (182), including the 5-HT5, receptor (183),
which is implicated in circadian rhythms and anxiety. They also
act as allosteric modulators of subunit-specific GABA, channels
(184) and adenosine A1 receptors (185). Valerenic acid and deriv-
atives have been shown to have potent anxiolytic effects in rodents
models (186), with these effects underpinned by in vivo binding to
a specific subunit (83) of the GABA, receptor (187).

In humans, single doses of valerian have been shown to disrupt
vigilance and information processing task performance after 1-2 h
(188) but not the morning after administration (188,189). In
1 study, valerian was also shown to be equipotent to benzodiaze-
pines in sleep quality and waking symptoms in insomnia outpa-
tients (190) and evidence suggests specific efficacy when
coadministered with hops (191,192). However, reviews of the stud-
ies assessing the efficacy of VE have been somewhat inconclusive,
with only 1 eligible, methodologically adequate study of anxiolysis
(193). Reviews of VE efficacy in sleep disturbance have concluded
that the evidence is “promising but not fully conclusive” on the ba-
sis of 9 included trials (194) and that the evidence only “suggested”
that valerian improved sleep quality on the basis of 16 eligible ran-
domized, controlled trials (195). A recent meta-analysis that in-
cluded 18 studies (196) found that VE significantly improved
sleep quality when measured by a simple subjective yes/no question
but that evidence from typical, validated sleep questionnaires was
lacking. In general, research in the area is replete with methodolog-
ical inconsistencies but suggests VE is associated with few negative
side effects.

Phenolics

Phenolics are ubiquitously found across the plant kingdom, with
~10,000 structures identified to date. With a few notable excep-
tions, phenolic compounds are synthesized from precursors pro-
duced by the phenylpropanoid pathway. Structurally, they share
at least 1 aromatic hydrocarbon ring with 1 or more hydroxyl
groups attached. The simplest compound with this structural motif
is the phenol molecule, which itself does not occur in plants. Phe-
nolics range from simple low-molecular weight compounds, such
as the simple phenylpropanoids, coumarins, and benzoic acid de-
rivatives, to more complex structures such as flavanoids, stilbenes,
and tannins. Of these, the flavonoids represent the largest, most di-
verse group, encompassing some 6000 compounds, all of which
share a common underlying structure of two 6-carbon rings,
with a 3-carbon bridge, which usually forms a 3rd ring. Flavanoids
can then be subdivided according to modifications of this basic
skeleton into chalcones, flavones, flavonols, flavanones, isoflavones,
flavan-3-ols, and anthocyanins (197).

The ecological roles of phenolic compounds include constitu-
tive and induced roles in toxicity and feeding deterrence in insects
(198,199). However, they also contribute to a more benign palette
of intra- and inter-plant protective, symbiotic, and attractant/
deterrent effects. For instance, they are induced in the face of bac-
terial or fungal attack; provide scent, color, and flavor to attract
symbiotic insects and deter herbivores; act as phagostimulants;
act as allelopathic agents in intra-plant relationships; and manage
symbiotic relationships with soil bacteria. Alongside these roles,
many phenolic compounds also play roles in antioxidant defenses
and the absorption of UV light (198,199).

In terms of CNS function, a wide range of phenolic compounds
interact directly with neurotransmitter systems. As an example, in
animal models, a diverse range of individual and combined flavo-
noids that occur in traditional medicinal extracts exert sedative/
anxiolytic effects via direct binding to GABA, receptors (200,
201), cognitive enhancement via antagonistic GABA, receptor
binding and resultant cholinergic upregulation (202), and antide-
pressant effects via monoamine oxidase inhibition and resultant in-
creases in levels of 5-HT, DA, and noradrenaline in select brain
areas (203). Plants also synthesize a range of phenolic phytoestro-
gens, including isoflavonones, flavones, stilbenes, and lignans
(204,205), which function as defense chemicals against herbivory
by disrupting the endocrine functions of the insect and modifying
their life course (205). Similarly, in mammals and other verte-
brates, phytoestrogens modulate hormonal systems, and therefore
brain function, via a variety of mechanisms (see Soy isoflavones be-
low) (205).

Phenolics, and flavanoids in particular, are ubiquitous in plants
and therefore represent an important component of a normal hu-
man diet. Epidemiological studies have suggested associations be-
tween consumption of phenolic-rich foods or beverages and
various diseases, such as stroke, cardiovascular disease, and cancer
(206) and neurologic disorders such as dementia/AD (207,208).
Cognitive performance in elderly populations has also been shown
to be associated with tea, but not coffee, consumption (209) and
the consumption of polyphenol-rich foods such as chocolate, red
wine, and tea (210).

Naturally, multiple phenolic compounds coexist in foods. Many
investigations utilizing animal models have demonstrated, for in-
stance, that berry extracts with high levels of anthocyanins or other
polyphenols can reverse brain insult- and age-related cognitive dec-
rements in rodents and that the actives can cross the blood brain
barrier (211). Similarly, in healthy humans, complex mixtures of
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cocoa-flavanols have been shown to increase peripheral vaso-dila-
tion and cerebral blow flow during task performance, as indexed by
functional MRI (212), and improve performance on cognitively de-
manding tasks (213). It has been suggested that flavonoid-rich
foods may limit neurodegeneration and prevent or reverse normal
or abnormal deteriations in cognitive performance (214). However,
the majority of the research in this area is concentrated on the ef-
fects of single molecules and the following includes a review of ev-
idence surrounding the 3 most promising single molecule
candidates. The chemical structure of curcumin, EGCG and resver-
atrol are shown in Figure 3.

Curcumin. Curcumin, a curcuminoid polyphenol responsible for
the bright yellow color of the Indian spice turmeric (Curcuma longa
L.), has been utilized for centuries within the Ayurvedic system of
medicine for the treatment of a whole host of ailments, including
inflammation (215). Within the plant, curcumin is associated
with potent suppression of bacteria, funghi, and viruses, with these
effects also observed both in vitro and in animal models (216).

Curcumin exerts varied and wide-ranging effects on molecular
targets (217). These include transcription factors such as NF2, a
master regulator of the antioxidant response; the protein kinase-
enzymes, which are involved with the majority of cellular pathways,
especially those involved with signal transduction; enzymes such as
heme oxygenase 1, a stress response protein whose expression is
upregulated after curcumin consumption and associated with neu-
roprotection (218); invasion and angiogenesis biomarkers such as
matrix metalloproteinase 9, which are associated, among numer-
ous other activities, with tissue repair; and inflammatory mediators
such as NF-«kB and cytokines such as TNFa and IL-1 and IL-6
(219). Curcumin (in vitro) has also been observed to inhibit the
metabolism of amyloid precursor protein (220) and dose depen-
dently inhibit amyloid-g fibril formation and extension, as well
as destabilizing existing fibrils (221).

In animals, some of the physiological effects attributed to cur-
cumin include activity against a range of neurologic diseases in an-
imal models, including AD (222), multiple sclerosis (223),
Parkinson’s disease (224), age-associated neurodegeneration
(225), schizophrenia (226), and depression (227). In animals, cur-
cumin is also associated with the prevention of cognitive deficits
(228) and an ability to improve learning and memory in mouse
models of AD and reverse scopolamine-induced amnesia in rats
(229). An epidemiological study of over 1000 60- to 90-y-old, non-
demented Asians provided further tentative evidence of better cog-
nitive performance by frequent or occasional curry consumers
compared with nonconsumers or rare consumers of curry (230).
Of course one has to consider that other ingredients in curry
may be providing these effects alone or in synergy with curcumin.

Despite a wealth of in vitro and in vivo animal evidence, to date
there is lack of evidence of clinical benefits in humans, leaving open
the issues of bioavailability and biotransformation (231). To the
present, over 40 small pilot trials in humans have been completed
assessing pharmacodynamics/kinetics and efficacy in a variety of
small patient groups (217). Curcumin is currently the subject of
a wide range of ongoing clinical trials. These include assessments
of its efficacy in the treatment of AD as a monotherapy and in com-
bination with GB (232).

EGCG. A number of the catechin polyphenols that are abundant in
tea (Camellia sinensis L.) are reputed to have pharmacologically ac-
tive properties. The 4 main tea flavanols are: (-)-epigallocatechin,
(-)-epichatichin, (-)-epichatechin-3-gallate, and EGCG, with
EGCG generally thought to be the main and active component in
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green tea. Within the plant, catechins are purported to be involved
in the defense against invading pathogens, including insects, bacte-
ria, fungi, and viruses (233), and have been observed to displace na-
tive plant species when exuded from the root of the Centaura
maculosa (spotted knapweed) (234). Protection against bacterial
and viral infection has also been observed against human patho-
gens (235,236) as well as a plethora of other health parameters in
humans [for review, see (237)].

The potentially neuropotective effects of EGCG include direct
effects seen in vitro in metal chelation (238), as an antiinflamma-
tory agent (239), and in the reduction of amyloid- and ameliora-
tion of amyloid-B induced neurotoxicity (240,241), with these
neuroprotectant properties being in part mediated via the activa-
tion of cell survival genes and modulation of protein-kinase ¢ sig-
naling (238). EGCG has also been shown to facilitate cholinergic
transmission (242), enhance neurite outgrowth (243), and modu-
late cerebral blood flow parameters in healthy humans (E. L.
Wightman, C. E Haskell, J. L. Reay, J. S. Forster, R. Veasey, D. O.
Kennedy, unpublished data).

In vivo evidence from animal models suggests neuroprotective
properties in the face of AD (244-246) and Parkinson’s disease
(247) and following schemia/reperfusion injury (248,249). Long-
term administration of green tea catechins (63% EGCG) has also
been shown to improve cognitive performance and increase antiox-
idant capacity in normal rats (250) and rats infused with amyloid-8
(251). EGCG was also found to significantly increase the lifespan of
Candida elegans, although, interestingly, this was observed only
during situations of increased heat and oxidative stress (252).
This might suggest that the life-extending (and perhaps other) ef-
fects of EGCG are due to antioxidant actions and an upregulation
of stress resistance-related proteins such as heme oxygenase 1. In-
deed, pretreatment of cells with EGCG is associated with an in-
crease in levels of heme oxygenase 1 (253). Despite the relatively
small number of investigations into the neuroprotective properties
of EGCG in humans, epidemiological evidence reports that higher
consumption of tea/green tea is associated with a reduced risk of
neurodegenerative disorders (254) and a lower prevalence of cogni-
tive impairment (210). In terms of direct intervention, despite a re-
cent pilot study observing no cognitive effects of EGCG after acute
administration of 135 and 270 mg to healthy, young participants
(E. L. Wightman, C. F. Haskell, J. L. Reay, J. S. Forster, R. Veasey,
D. O. Kennedy, unpublished data), this null finding could be
seen as the result of acute bolus consumption by cognitively intact
participants. Future research should therefore consider both acutely
and chronically supplementing green tea catechins to young,
healthy participants as well as to those with cognitive senescence.

Hypericum perforatum (St. John’s Wort). Extracts of Hypericum
perforatum (HP) have been in recorded medicinal use from the
time of the ancient Greeks (255). HP contain a wide variety of po-
tentially bioactive constituents, including phenolic acids (e.g.
chlorogenic acid), and a wide range of flavonoids (quercetin, quer-
citrin, isoquercitrin, rutin, hyperoside, epigenanin), structurally re-
lated phloroglucinol derivates such as hyperflorin (256), and
naphthodianthrones such as hypericin. The antidepressant and an-
tiinflammatory effects of HP were initially attributed to the naph-
thodianthrones (257) and more recently to hyperforin (258,259)
and the range of flavonoid constituents (260). It is now widely ac-
cepted that the various potential actives act synergistically
(261,262). In ecological terms, many of these phytochemicals are
induced by biotic and environmental stressors (263) via a NO
and jasmonic acid pathway (264) and exert antimicrobial and an-
tiviral activity [with these and antiretroviral effects extending to
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animal models also (257)] and antiherbivore activity, including via
the induction of photosensitivity in the consuming animal (265).

Beyond pronounced antiinflammatory and antibiotic proper-
ties (259), HP exerts a number of effects directly relevant to mam-
malian brain function, including inhibition of the neuronal
reuptake of 5-HT, DA, norepinephrine, GABA, and L-glutamate
and increased neurotransmitter sensitivity and receptor binding
(266). Functional effects include neuroprotective effects, an atten-
uation of cognitive impairment, and improved cognitive perfor-
mance in rodents (267).

In humans, the vast majority of research has focused on the
antidepressant effects of HP extracts. In this domain, a number
of reviews and meta-analyses have confirmed the efficacy of HP in
the treatment of mild-to-moderate depression (268). In the most re-
cent Cochrane review by Linde et al. (269), a total of 29 methodolog-
ically adequate controlled trials were included. In common with the
previous reviews, the authors conclude that HP extracts seems to be
more effective than placebo and as effective as standard antidepres-
sants for treating major depression. HP also engendered significantly
fewer side effects than synthetic antidepressants.

Resveratrol. The phytoalexin resveratrol (3, 4', 5 trihydroxystil-
bene) is produced within a range of edible plants in response to tis-
sue damage and environmental stressors such as fungal and viral
attack (270,271). Antifungal effects have also been observed against
human pathogenic fungi (272) and antiviral effects against the her-
pes simplex virus (273,274).

Consumption of resveratrol is associated with numerous
protective health benefits in mammals, including increased longev-
ity (275), antiinflammatory (276) and antiviral properties (277),
and protection against cancer and tumorogenesis (278), cardio-
vascular disease (279), and atherosclerosis (280). With regards to
these latter 2 effects, resveratrol has been associated with the
French paradox, whereby the consumption of red wine in some
cultures has been suggested to contribute to a relatively low inci-
dence of coronary heart disease despite a diet high in saturated
fats (281,282).

Potential neuroprotective mechanisms of action include im-
proving blood flow and perfusion (283-287) and the promotion
of antioxidant defenses (288), which in vivo are likely to be as a re-
sult of resveratrol bolstering the bodies’ own endogenous antioxi-
dant defenses (289) via upregulation of a host of antioxidant
enzymes (290-292). This may be partly a consequence of activation
of the Nrf2 transcription factor, which plays a central role in the
regulation of cellular redox status (291) and modulation of the
protein kinases, which were observed to be involved with neuro-
protection against amyloid-B—induced toxicity (293) in vitro (294)
and in vivo, specifically in the hippocampus (295). In vivo, oral ad-
ministration has also been shown to diminish amyloid-g plaque for-
mation in a region-specific manner in a transgenic mouse model
(296).

Regarding cognitive performance, a number of in vivo studies in
rodents have demonstrated preserved behavior and cognitive per-
formance in aged rats (297) and following laboratory-induced
brain insults (298-302). In humans, a recent, double-blind, pla-
cebo-controlled, balanced cross-over study from our own research
group assessed the effect of single doses of resveratrol on cerebral
hemodynamics in healthy humans using near infrared spectroscopy.
In this study (303), doses of 250 and 500 mg increased cerebral blood
flow in the frontal cortex of the brain in a dose-dependent manner,
as indexed by hemoglobin concentrations, during tasks that activate
this brain region. Both doses also led to increased concentrations of
deoxy-hemoglobin, indicating increased uptake of oxygen. This

demonstration of the effects of resveratrol on human brain function
confirms that this polyphenol may have beneficial effects both in
healthy humans and those suffering diseases, including AD and other
neurological disorders, that feature decrements in cerebral blood
flow.

Soy isoflavones. Soy extracts contain a number of soy isoflavones
(SI), including genistein, diadzein, and glycetin, which are structur-
ally similar to estrogen (304) and exhibit estrogen-like effects, in-
cluding binding directly to estrogen receptors, inhibiting
aromatase, and disrupting estrogen signaling (205). In general, it
is assumed that phytoestrogens act as defense chemicals against in-
sect herbivory, disrupting endocrine function and modifying the
insect’s life course and fertility. There are also many examples of
similar effects in vertebrate and mammalian herbivores (205).

SI exert a number of effects relevant to general health, including
modulation of enzymatic function, antioxidant activity, immune
function, and the mechanisms underlying carcinogenesis (305).
These factors may underlie putative neuroprotective effects and
tentative epidemiological observations of a relationship between
SI consumption and breast cancer (306). In terms of effects on
brain function, it is theorized that isoflavones are potentially cogni-
tive enhancing. In animal models, some improvements have been
observed following SI in the memory function of ovariectomized
rodents (307) and in middle-aged or older rats as a consequence
of supplementation with both genistein (308) and SI (309), with
concomitant improvements in cholinergic (309) and prefrontal do-
paminergic function (308). In humans, supplementation with SI in
females has been shown to significantly improve the physical, but
not psychological, symptoms of premenstrual syndrome compared
with placebo (310) and, in post-menopausal women, SI has been
shown to improve ratings of quality of life (311), decrease follicle-
stimulating hormone and luteinizing hormone, increase estra-
diol (312), and have modest positive effects on neurocognitive
function and mood (313,314). However, it is notable that only 4
of 7 studies published between 2000 and 2007 reported a positive
impact of isoflavones on cognitive function in this group (315).
In hormonally intact humans, a diet rich in SI, as opposed to a de-
pleted diet, for 10 wk improved short- and long-term memory
tasks in males and females, with additional improvements in 2 ex-
ecutive function tasks for the females in the cohort (314). Most re-
cently, SI supplementation for 6 wk in males was associated with
selective improvement in a spatial working memory task in which
females usually outperform males (316).

Conclusions
In general, the literature on the efficacy of the herbal extracts and
phytochemicals reviewed here in terms of improving aspects of hu-
man brain function is somewhat equivocal. Research into the 2 al-
kaloids, caffeine and nicotine, is confounded by withdrawal effects
and most of the remaining treatments have failed to progress be-
yond relatively small scale human studies. Indeed, in the case of
the single molecule polyphenols (curcumin, resveratrol, EGCG),
their huge and exponentially expanding literatures are singularly
lacking in reports of relevant human intervention trials. Of the 3
treatments that have progressed to larger scale controlled trials
and eventual meta-analyses, both GB and valerian are bedevilled
by methodological inconsistencies and inadequacies that make
conclusions difficult to draw (133,196), with only St. John’s Wort
consistently demonstrating efficacy (269).

One consistent feature across the phytochemical groups is a gra-
dation seen in terms of ecological roles and toxicity. Although
something of a generalization, it is possible to characterize alkaloids
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as occupying the toxic extreme in terms of their deterrent effects in
insects and other herbivores, with terpenes inhabiting the middle
ground with a more mixed toxicity profile and a wider range of de-
terrent/attractant/protective ecological roles. Phenolics then oc-
cupy the more benign end of the spectrum, exerting many
internal protective roles and managing nontoxic interactions with
herbivores and symbiotes. The same gradation could be suggested
for the factors underlying the CNS effects in humans. Many of the
behavioral effects of low doses of alkaloids are evidently the conse-
quence of modulation of the same CNS mechanisms in both insects
and humans and they elicit similar behavioral profiles given the
comparative complexity of the taxa (Table 1). Although little re-
search has addressed the effects of terpenes and phenolic com-
pounds on insect behavior, it is possible to speculate that the
CNS effects of terpenoids may be balanced between those predi-
cated on similarities between human and invertebrate herbivores,
e.g. the cholinesterase inhibitory and direct cholinergic and GA-
BAergic receptor binding properties of many terpenes, and also
the similarities between human and plant molecular physiology.
The phenolic compounds, particularly those like flavonoids that
are ubiquitously consumed in plant-based foods, may then owe
the balance of their CNS effects to the latter (but with notable ex-
ceptions in terms of hormonal effects and GABAergic effects). As
well as the natural compatibility of molecules created by conserved
stress signaling pathways common to both plants and humans, it is
interesting to note that the induced antibacterial/fungal and viral
effects of curcumin, EGCG, and resveratrol within the plant
(216,233,271) may be mirrored by a similar protection conferred
after exposure to similar pathogens in human cells and animal
models (216,235,273). Although an exact concurrence between
the mechanisms of action across the taxa has not yet been estab-
lished, Friedman (233) has demonstrated that, in vitro, the antibac-
terial, antitoxin, antiviral, and antifungal properties of tea
flavonoids were similar against all of the food-borne pathogens re-
viewed. These mechanisms ostensibly involved either binding to
the invader and inactivating it or perturbing the membrane struc-
ture of the pathogen and causing leakage, with both resulting in
preventing or limiting the deleterious effects of the bacteria, toxin,
or virus.

With phenolic compounds in particular it is also interesting to
note that humans are likely to have lost the ability to synthesize vi-
tamins, which include several terpenoids and methylated phenols,
because the ubiquity of these micronutrients in our diet made it
more advantageous in evolutionary terms to sequester them from
food rather than synthesize them de novo (317). The same argu-
ment has been made for all dietary antioxidants, including many
nonvitamin phytochemicals (318), and this proposition could be
extended to include the nonantioxidant properties of groups of
phytochemicals that occurred as part of our natural ancestral
diet. This would largely accommodate the phenolic compounds,
and flavonoids in particular, that are ubiquitous in plant foods. It
may be relevant that most phenolic compounds have low parent-
molecule bioavailability but still exhibit in vivo bioactive effects
(319,320). The rapid process of metabolism that takes place in
the body could be viewed as the body processing the molecules
into, for instance, glucuronidated and sulfated metabolites to
more effectively transport and utilize them, in much the same
way that vitamins are processed into their active metabolites and
derivatives following consumption.

The gradation in toxicity and ecological/CNS functions is also
seen in the comparative levels of research attention paid to the
chemical groups. The alkaloid group has benefitted from intense
research for over 200 y (57) and has provided a multitude of
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medicinal compounds with CNS activity (321). Interest in ter-
penes, on the other hand, has really only escalated in the last 25 vy,
during which time many advances have been made in terms of
characterizing the constituents and activities of complex plant ex-
tracts that often have low toxicity, high bioavailability, and a mul-
titude of potentially relevant physiological effects (322). Similarly,
research into the health effects of phenolic compounds has only
reached any considerable level within only the last 15 y (323). In
the case of alkaloids, they have proven particularly amenable to re-
search and drug discovery because of their comparatively straight-
forward, single molecule modes of action. Evidence suggests that
extracts with largely terpene or phenolic actives owe their effects
to multifarious synergies between their component chemicals
(324,325) and this factor, along with an inability to reliably stan-
dardize extract constituents, has to date constrained their develop-
ment and the clarity of the literature on their efficacy in humans.

Future directions

The development of effective plant-based products for improving
human brain function is constrained by a number of issues, includ-
ing a need to definitively identify relevant active components and
understand synergies within them and an inability to adequately
standardize replicable extracts. It is evident that insects such as
Drosophila and the honeybee are sensitive to modulation by a
full range of pharmacological agents. However, insect behavioral
studies have only involved secondary metabolites either as a conse-
quence of using them as simple tools for the modulation of specific
neurotransmitter targets or alternatively in insect models of drug
abuse and addiction (Table 1). It would seem appropriate that in-
sect models could be utilized as simple, economical, time-efficient,
and ethically acceptable tools for investigating the neuronal and
behavioral consequences of individual phytochemicals and com-
plex mixtures. It is also evident that there are many viable terpene/
phenolic extracts that may have beneficial effects on CNS function
without the toxicity associated with psychoactive alkaloids. These
may include complex chemical mixtures that attract symbiotic in-
sects and potentially offer them cognitive benefits (106). However,
many phytochemicals simply do not function effectively as single
molecules and there are many examples of synergies within and be-
tween the chemical groups. Insect models may provide ideal start-
ing points for disentangling these synergies prior to animal and
human studies.

Many secondary metabolites are also expressed as a conse-
quence of environmental stressors, and an increased understanding
of the many and varied ecological roles of secondary metabolites
should, in the future, make it practical to upregulate and standard-
ize the levels of desired active components by introducing a variety
of stressors such as herbivore attack, salinity, UV light, bacteria, or
fungi in carefully controlled environments.

Finally, the vast majority of the voluminous research relating to
the topics briefly reviewed above is conducted in entirely discrete
discipline “silos.” In terms of research relevant to brain function,
the vast majority is basic laboratory research conducted in vitro/
vivo in an entirely atheoretical context, often with parent molecules
or chemical concentrations that are highly unlikely to be seen in the
human brain. Asking the simple question of why plant chemicals
modulate brain function can only serve to focus some of this
huge research effort, with the integration of thoughts and concepts
from a diverse range of disciplines, including molecular biology/
biochemistry, plant science, zoology, entomology, pharmacology,
medicine, neuroscience and psychology potentially offering an in-
tellectual synergy that might move this area a step forward.
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